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ABSTRACT  
In the current cloud environment, resource scheduling is an important research field aimed at effectively 

managing and allocating cloud computing resources to meet user needs and optimize system performance (Yu, 

2021). However, resource scheduling and load prediction are two closely related concepts that influence and 

depend on each other in the cloud environment (Kumar & Sharma, 2020). Load prediction provides an important 

reference for resource scheduling (Niri et al., 2020; L. Zhang et al., 2021a). By accurately predicting the load 

situation, resources can be allocated and adjusted in advance before load fluctuations occur, avoiding problems 

of resource shortage or waste. At the same time, load prediction can also help resource scheduling algorithms 

better understand load patterns and trends, thereby formulating more reasonable scheduling strategies. It can be 

said that to a certain extent, load prediction is the basis for resource scheduling. How to carry out precise load 

prediction has become a typical challenge faced by current research on cloud computing scheduling optimization. 

This paper first analyses the characteristics of the cloud environment and finds that there are problems such as 

increasingly obvious dynamic load characteristics, diversified resource requirements, and poor reliability of 

workflow task execution (Saif et al., 2021; Zhou et al., 2020). Then, starting from the dynamic characteristics of 

the cloud environment, this paper summarizes and analyzes its impact on cloud resource scheduling (Cao et al., 

2022; Peng et al., 2020), and outlines the limitations of traditional load prediction methods (Sideratos et al., 2020; 

L. Zhang et al., 2021b)in view of the non-stable characteristics of dynamic changes in resource utilization in the 

cloud environment. The contribution of this paper is to propose a decomposition-prediction algorithm that 

reduces the impact of the above uncertainties on scheduling by predicting the host load. 
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INTRODUCTION  

 

Cloud computing, as a new computing model and service category, provides flexible demand 

allocation, scalable computing services, and elastic resource scheduling for enterprises and users 

through virtualization, distributed computing, and dynamic scheduling technologies  (Bello et al., 

2021). It effectively solves problems such as uneven resource sharing (Barrouillet et al., 2007) and 

low storage efficiency (Abdalla et al., 2022; Nannai John & Mirnalinee, 2020), greatly improving the 

availability of computing resources. More and more users choose to migrate their applications or data 

to the cloud to accept its computing or storage services. As the physical carrier of cloud computing, 

the scale of cloud data centers is expanding  (Gao et al., 2022), making the load dynamics of the cloud 

environment obvious (J. Chen et al., 2023; Rani & Geetha Kumari, 2021). 

Load prediction is the process of predicting and estimating the load situation in a future 

period of time  (Fatin et al., 2022; Saripalli et al., 2011; Singh et al., 2021). This makes load prediction 

that conforms to the characteristics of cloud computing particularly important. Reviewing traditional 

load prediction algorithms, Moving Average (Schaffer et al., 2021), Exponential Weighted Moving 

Average (Sukparungsee Id et al., 2020), Autoregressive Moving Average (Prado et al., 2020), and 

Neural Networks (Chicco, 2021; Gawlikowski Student Member et al., 2021; Li et al., 2022) all have 
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a strong dependence on historical data, which does not fit well with the dynamic load of the cloud 

environment. 

Therefore, this study uses Multiple Prediction Combination Methods to overcome the 

limitations of traditional methods. It is expected that the method proposed in this study will be better 

adapted to the characteristics of cloud computing. This paper mainly introduces the research topic, 

research motivation, problem statement, and conclusion. 

 

 

RESEARCH MOTIVATION   

 

The motivation for this study lies in the continuous development of cloud computing technology, 

which has higher requirements for the adaptability of load prediction methods. 

Moving Average is a simple and commonly used real-time load prediction algorithm (Prado 

et al., 2020). It predicts future loads based on the average value of historical load data. The moving 

average algorithm is simple to use, has low computational complexity and real-time performance, and 

is suitable for stationary or slowly changing load situations. However, the moving average algorithm 

has poor adaptability to rapidly changing and nonlinear load patterns. 

Exponential Weighted Moving Average (EWMA) is a real-time load prediction algorithm 

based on exponential weighting (Nyamasvisva et al., 2022; Sukparungsee Id et al., 2020). It performs 

a weighted average of historical load data, with newer data having higher weights. The EWMA 

algorithm can adapt to changes in load more quickly and has a certain degree of real-time performance 

and accuracy. However, the EWMA algorithm is sensitive to sudden changes or abnormal data in the 

load, which may cause error accumulation. 

The Autoregressive Moving Average (ARMA) model combines the characteristics of 

autoregression (AR) and moving average (MA) for real-time load prediction (Schaffer et al., 2021). 

The ARMA model considers the historical data and error terms of the load, and predicts future loads 

through parameter estimation and model fitting. The ARMA model is suitable for load data with 

certain autocorrelation and trends. However, the parameter estimation and model fitting of the ARMA 

model are relatively complex and need to be adjusted and optimized according to specific situations.  

Neural network models are also widely used in real-time load prediction (Chicco, 2021; Li 

et al., 2022). Among them, recurrent neural networks (RNN) and long short-term memory networks 

(LSTM) are common models. These models can capture the temporal characteristics and complex 

relationships of load data, and have strong nonlinear modeling capabilities. Neural network models 

can achieve relatively accurate real-time load prediction, but require a large amount of training data 

and computational resources, and the adjustment of hyperparameters and model optimization are 

relatively complex. 

The Kalman filter algorithm has the advantages of efficiency and accuracy, making it 

suitable for state estimation and prediction in dynamic systems (Khodarahmi, et al., 2022). It can also 

be combined with other algorithms for applications in emerging fields like cloud computing. 

However, the algorithm relies on linear assumptions and noise models, with its performance being 

significantly affected by initial conditions and parameter settings. Additionally, the computational 

cost cannot be ignored when dealing with large-scale complex systems. Therefore, it is essential to 

leverage its strengths and address its weaknesses by optimizing algorithm parameters and models to 

enhance its effectiveness in specific application scenarios. 

From Table 1, it can be observed that the moving average method is simple and easy to use, 

suitable for stable loads, but weak in adapting to rapid changes. The Exponentially Weighted Moving 

Average (EWMA) responds quickly to load changes, but is sensitive to abrupt data and tends to 

accumulate errors. The Autoregressive Moving Average (ARMA) model is suitable for autocorrelated 

loads, but parameter fitting is complex. Neural network models, such as RNN and LSTM, can 
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precisely capture complex load relationships, but have high training costs and complex optimization. 

Therefore, the Kalman filter algorithm aligns well with the characteristics of cloud environments. 

 

Table 1: SWOT Analysis of Existing Load Prediction Algorithms 

 Algorithm Strengths Weaknesses Opportunities Threats 

1 Moving 

Average 
(MA) 

 (Prado et al., 

2020) 

Based on the 

average of 

historical load 

data to predict 

future load, easy 

to use, fast 

calculation 

Poor 

adaptability to 

rapid changes 

and nonlinear 

load patterns 

Suitable for flat 

or slowly 

changing loads 

Poor 

adaptability to 

dynamic data 

2 Exponential 

Weighted 

Moving 

Average，

(EWMA) 
(Nyamasvisva 

et al., 2022; 

Sukparungsee 

Id et al., 2020) 

The weighted 

average of 

historical load 

data, the more 

recent data has a 

higher weight, 

with a certain 

real time and 

accuracy. 

More sensitive 

to load 

mutations or 

abnormal data 

Able to adapt to 

changes in load 

faster 

It may result in 

accumulation of 

errors. 

3 Autoregressive 

Moving 

Average， 

(ARMA） 
(Schaffer et al., 

2021) 
 

Taking into 

account the 

historical data 

and errors of 

loads and 

predicting 

future loads 

through 

parameter 

estimates and 

models. 

Parameter 

estimates and 

model 

adaptation are 

more complex 

Applicable to 

load data with a 

certain 

relevance and 

trend 

Need to be 

adjusted and 

optimized 

according to 

specific load 

conditions 

4 Neural 

Networks 

(NN) 

 (Chicco, 2021; 

Li et al., 2022) 

Able to capture 

timing 

characteristics 

and complex 

relationships of 

load data 

It requires a lot 

of training data 

and 

computational 

resources 

Strong non-

linear modelling 

capabilities 

 

Adjustment and 

model 

optimization for 

super-

parameters are 

more complex 

5 Kalman Filter 

Algorithm 

(Khodarahmi, et 

al., 2022); 

Has the 

advantages of 

efficiency and 

accuracy 

The algorithm 

relies on linear 

assumptions and 

noise models 

Can be 

combined with 

other algorithms 

for applications 

in emerging 

fields like cloud 

computing 

The 

computational 

cost cannot be 

ignored when 

dealing with 

large-scale 

complex 

systems 
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STATEMENT OF THE PROBLEM – Load Prediction Algorithm 

 

Many scholars have pointed out that due to the high scalability and flexibility of cloud computing, it 

has received increasing attention, and cloud services supported by it have become a new IT service 

model (Javadpour et al., 2022; Mapetu et al., 2021; Zhu et al., 2019). More and more users choose to 

migrate applications or data to the cloud to accept its computing or storage services. The scale of 

cloud data centers, as the physical carrier of cloud computing, is expanding, making the load dynamics 

in the cloud environment obvious. 

Other scholars pointed out that workload prediction algorithms based on statistical methods 

lack adaptability to highly variable workloads (Y. Chen et al., 2020; Gao et al., 2020). In addition, 

some scholars also pointed out that workload prediction algorithms based on classical machine 

learning require manual feature extraction and model parameter adjustment, which is both difficult 

and time-consuming (Gao et al., 2020; Zhu et al., 2019). Additionally, scholars pointed out that 

workload prediction algorithms based on deep learning do not require manual feature extraction, but 

their prediction accuracy is limited (Gao et al., 2020; Toumi et al., 2019). 

There are also scholars who pointed out that neural network algorithms or linear regression 

methods cannot predict real loads with large fluctuations well (Toumi et al., 2019; Xu et al., 2022). 

Although the use of ensemble learning has a more accurate final learning effect, the nonlinear 

characteristics of the load sequence cannot achieve satisfactory real value prediction, and the 

prediction time is too long to predict real-time loads. 

 In summary, with the development of cloud computing and cloud data centers, the cloud 

environment is becoming more complex. Cloud environment workload prediction faces problems 

such as obvious dynamic characteristics of the load, low prediction accuracy, and poor real-time 

performance of prediction algorithms. 

 

 

PROPOSAL 

 

As described earlier, it is particularly important to propose a load forecasting algorithm that can better 

adapt to cloud environments. Therefore, this article proposes combining the Kalman filter algorithm 

with the EMD algorithm, aiming to better adapt to the characteristics of cloud environments. 

The Kalman Filter Algorithm has good performance in linear system models and real-time 

application scenarios (Khodarahmi, et al., 2022). Through optimal estimation and recursive updating, 

it provides accurate state estimation and prediction results. It also has dynamic model adaptability 

and low computational complexity, and is suitable for many application fields that require real-time, 

accurate and efficient filtering. 

The EMD algorithm has the advantages of adaptability, being data-driven, flexibility, no 

prior assumptions, and time locality. These characteristics make the EMD algorithm widely used in 

signal processing, vibration analysis, modal analysis, and other fields, providing more accurate, 

comprehensive, and reliable signal decomposition and feature extraction results (Quinn et al., 2021; 

Y. Zhang et al., 2022). 

This study uses the prediction method of multiple prediction combination methods to 

propose a decomposition-prediction method. The schematic diagram is shown in Figure 1. By 

processing the original dynamic data through the EMD algorithm and then predicting the load through 

the Kalman Filter Algorithm, it aims to both adapt to the dynamic load characteristics of the cloud 

environment and ensure real-time prediction accuracy. 
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Figure 1: Decomposition-Synthesis Prediction Algorithm diagram.  

 

 

CONCLUSION 

 

This article analyzes the importance of load forecasting technology and the relationship between 

resource scheduling and load forecasting. It also identifies existing problems. The SWOT method is 

used to evaluate different load forecasting methods and analyze the advantages and disadvantages of 

algorithms. A solution is proposed: the prediction method of multiple prediction combination methods 

to propose a decomposition-prediction method. 

A good load forecasting algorithm should be able to accurately and adaptively predict the 

future trend and pattern of load changes, while having scalability, robustness, interpretability, and 

comprehensive performance. Such an algorithm can provide strong support for resource scheduling 

and load balancing in a cloud environment, improving system performance and efficiency. 
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